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Wave-mean interactions of the classical type, in which the effect of the waves on the 
mean motion depends on wave breaking or other types of wave dissipation, are to be 
sharply distinguished from other types of wave-mean interaction that have no such 
dependence on dissipation. Important cases arise both for unstratified (homentropic) 
flow and for stably stratified flow under gravity. A very general way of characterizing 
what is meant by the classical, dissipative type of wave-induced mean motion is to 
say that the wave-induced mean motions are balanced motions, in a sense to be 
discussed, and that the effective mean force corresponds to the wave-induced 
vorticity or potential vorticity transport that results from wave dissipation. For a 
stratified fluid, ‘potential vorticity’ is to be understood in the sense of Rossby and 
Ertel. ‘Balanced’ is to be understood in whatever sense is needed to imply the 
invertibility of the vorticity or potential vorticity field t o  give the other fields 
describing the mean motion. At first sight this appears to require that an appropriate 
Mach, Froude and/or Rossby number for the mean motion should be much smaller 
than unity, but the fundamental, and in practice less stringent, principal requirement 
appears to  be that the spontaneous emission, or aerodynamic generation, of sound, 
gravity and/or inertio-gravity waves by the mean flow should be weak. 

Three basic examples of dissipative wave-induced mean flow generation are 
presented and discussed. The first is the transport of vorticity by dissipating sound 
waves, which gives rise to classical acoustic streaming of the quartz-wind type. The 
transport or flux of vorticity can always be taken to be an exactly antisymmetric 
tensor ; and in the case of a plane sound wave this tensor fluctuates about a mean 
value equal to - etJk qk, where is the kth component of 4, the rate of dissipation of 
the pseudomomentum or quasimomentum q z E k / p  per unit mass. Here p and E 
are the mean mass and wave-energy densities, w the intrinsic frequency, and k the 
wavenumber. This is a succinct way of making evident why it is only the 
contribution q to the radiation stress convergence per unit mass that is significant 
for the generation of mean streaming. The second example is the transport of 
Rossby-Ertel potential vorticity (PV) by internal gravity waves that are either 
dissipating laminarly, or ‘breaking ’ to produce inhomogeneous three-dimensional 
turbulence. This PV transport gives rise to mean streaming in much the same way 
as the vorticity transport in the acoustic example. The transport or flux of PV can 
always be taken to be directed exactly along the isentropic surfaces 8 = constant of 
the stable stratification, where 8 is potential temperature or potential density as 
appropriate; and in the case of a plane internal gravity wave the wave-induced PV 
transport fluctuates about a mean value G x q, where G is the basic gradient of 8 
associated with the stable stratification. This is a succinct way of making evident 
why it is only the projection of 0 onto the basic stratification surfaces that is 
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significant. In both the acoustic and the internal-gravity examples the transport is 
non-advective, and often upgradient. The third example is the corresponding 
problem for Rossby waves, in which the typical effect of wave dissipation is a 
downgradient PV transport. This is brought about in an entirely different way, 
namely through advection of PV anomalies by the fluctuating velocity field of the 
wave motion, whether the dissipation be laminar or by breaking. 

Processes of the sort idealized in the second and third examples are ubiquitous in the 
Earth’s atmosphere and, for instance, largely control the strength of the global-scale 
middle atmospheric circulation and hence, for instance, the e-folding residence times 
( -  lo2 y) of man-made chlorofluorocarbons in the lower atmosphere. 

1. Introduction 
Readers of this journal hardly need reminding of how wide a class of fluid 

phenomena can be “understood in terms of . .  . vorticity movement ” (Batchelor 
1967). This class can be widened still further, to include an important range of 
phenomena in large, stably stratified bodies of fluid like the Earth’s atmosphere and 
oceans, and stellar interiors, if we include with ‘ vorticity ’ the potential vorticity in the 
sense of Rossby and Ertel, hereafter ‘PV’. The phenomena in question include 
almost all large-scale motions of meteorological interest ; and an understanding of 
them is fundamental to such apparently diverse topics as the improvement and 
quality control of weather forecasting (e.g. Hoskins et al. 1985; Hoskins & Berrisford 
1988; McIntyre 1988), and the interplay between fluid dynamics and chemistry 
involved in the maintenance or destruction of the ozone layer (e.g. Brewer & Wilson 
1968; WMO 1985, 1989). 

An important subclass of these phenomena can usefully be thought of in terms of 
the interaction between waves and mean flows, an idea that has a long and 
distinguished history going back to nineteenth century work on acoustic streaming 
(Rayleigh 1896, and references therein). Rayleigh pointed out that the generation of 
certain mean flows by acoustic oscillations depends crucially on dissipative processes 
like viscosity, because in order to  generate these flows Kelvin’s circulation theorem 
must be violated. Wave-induced mean effects of a fundamentally similar kind are 
now believed to be central to  understanding the global-scale atmospheric general 
circulation and the transport of ozone and pollutants (e.g. WMO 1985; Andrews, 
Holton & Leovy 1987). More complicated wave motions are involved, their restoring 
mechanisms depending on gravitational and Coriolis forces in a variety of ways. But 
the important mean effects so far identified have always turned out, on careful 
analysis, to be associated with wave dissipation of one kind or another. This causes 
Kelvin’s circulation theorem either to  be violated (as in Rayleigh’s case) or to be 
circumvented by the irreversible material contour deformations characteristic of 
various ‘wave breaking’ processes, or both.? 

This essay is an attempt to show how descriptions in terms of vorticity or PV 
provide a key to understanding, and more precisely characterizing, the general 

t It is convenient for present purposes to widen the sense of the word ‘dissipation ’ t o  include 
all cases of wave breaking, despite the fact that the latter concept may be meaningful even in the 
inviscid limit, at least for some models of Rossby waves. This is because of the known regularity 
properties of two-dimensional solutions of the Euler equations (e.g. Childress et al. 1989 and 
references therein). Further discussion of the concept of wave breaking, in the general sense 
relevant to wave-mean interaction theory, may be found in two papers by McIntyre & Palmer 
(1984, 1985). 
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nature of these mean effects of dissipating waves. This is no more than might have 
been anticipated from Lord Rayleigh’s remark, and the essential ideas must have 
occurred to other investigators. But recent developments in the theory of PV 
inversion have, we think, enabled us to sharpen the ideas to a considerable extent 
and to reveal more clearly the full scope of their applicability and the nature of their 
ultimate limitations. The discussion tries to complement, rather than compete with, 
existing theories of wave-mean interaction. A guiding principle has been that of 
Batchelor (1953) : “The manner of presentation.. . has been chosen, not with an eye to 
the needs of mathematicians or physicists or any other class of people, but according 
to what is best suited, in my opinion, to the task of understanding the phenomenon. 
Where mathematical analysis contributes to that end, I have used it as fully as I 
have been able, and equally I have not hesitated to talk in descriptive physical terms 
where mathematics seems to hinder the understanding. ” 

The phenomenon, or class of phenomena, that we are interested in understanding 
here is to be sharply distinguished from certain other, essentially non-dissipative, 
types of wave-mean interaction. We begin with brief descriptions of some known 
examples that illustrate the need to make this distinction. 

2. Dissipative versus non-dissipative interactions 
Classical examples of the dissipative type include the longshore currents due to 

ocean breakers (e.g. Longuet-Higgins 1970a, b ;  1972), and their ‘kitchen sink’ 
counterparts, such as the cases depicted in figure 1. The case sketched in figure 1 ( a )  
makes a reliable lecture demonstration, using a glass oven dish on an overhead 
projector ; it closely resembles another well-known example, the ‘ quartz wind ’ or 
‘sonic wind’ generated by a beam of dissipating ultrasound (e.g. Lighthill 1978a, b) .  
All these examples illustrate the well-known rule of thumb that dissipating waves 
tend to have the same effect as a mean force in their direction of propagation. 

A celebrated, and fascinating, example in the atmosphere is the so-called ‘quasi- 
biennial oscillation ’, which has been well documented observationally since the early 
1950s, and which involves the reversal, every thirteen months or so, of the mean 
easterly or westerly winds in the equatorial lower stratosphere throughout a belt 
encircling the globe. The evolution consistently shows a ,characteristic space-time 
pattern with the mean wind reversals taking place earlier a t  higher altitudes. Its 
cause is believed on good evidence (e.g. Wallace & Holton 1968; Lindzen & Holton 
1968; Holton & Lindzen 1972; Dunkerton 1983; Plumb 1984) to be an interaction 
between the mean flow and certain kinds of upward-propagating, and possibly 
equatorward-propagating, gravitational-Coriolis waves originating in the tropo- 
sphere. An idealized form of the same phenomenon - a periodically reversing mean 
flow driven entirely by a steady input of waves, and exhibiting qualitatively the 
same space-time pattern - has been demonstrated in the laboratory using viscously 
dissipating, upward-propagating internal gravity waves in a salt-stratified fluid in a 
large annular container (Plumb & McEwan 1978). The dissipating waves induce an 
azimuthal mean flow, which in turn strongly retracts the waves; and the reversals of 
the mean flow arise as a feedback oscillation in which both halves of the interaction 
between waves and mean flow play an essential role. 

These and many other examples of the mean flows induced by dissipating waves 
have a general character that is easy to recognize but not, a t  first sight, so easy to 
define precisely. Part of the difficulty lies in what happens when one tries to make 
the ideas of ‘mean flow’ and ‘mean force’ precise yet general. The use of averaging 
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FIGURE 1 .  Simple lecture or laboratory demonstrations illustrating the typical nature and 
robustness of classical mean-flow generation by  dissipating waves. (a) An example using water 
waves tha t  requires no special apparatus. The cylinder, or any other anisotropic wavemaker, is 
oscillated fairly rapidly ( 2 5 Hz) so as to  radiate short waves more strongly in some directions than 
in others. The resulting mean streaming can be made visible (and wave dissipation enhanced) by 
sprinkling a little powder such as ordinary household flour on to  the surface of the water. Making 
the cylinder oscillate vertically demonstrates that  the observed mean flow is predominantly wave- 
induced, and not boundary-layer streaming from the surface of the wavemaker, which has the 
opposite sense. ( b )  By using a longer curved wavemaker in a larger tank, one Can focus the waves 
on a spot well away from the wavemaker and thus induce an easily observable mean flow 
concentrated near tha t  location. Carefully stopping the wavemaker and observing the persistence 
of the mean flow, in either case, demonstrates tha t  the mean flow is not merely a ‘Stokes drift ’. 
Relevant theoretical discussions are those of Longuet-Higgins (1953) and Craik (19824. among 
others. 

operators is almost inevitable at some stage; but, for the purpose of “understanding 
the phenomenon ”, averaging is very much a two-edged sword. On the one hand, its 
systematic use can simplify the analysis very significantly, especially if an 
appropriate Lagrangian average is used, so that the aspects connected with the 
circulation theorem, including the so-called ‘non-acceleration theorem ’, can manifest 
themselves (e.g. Bretherton 1969, 1971 ; Dewar 1970; Andrews & McIntyre 1978; 
McIntyre 1980a, 6 ) .  On the other hand, the complete set of averaged equations and 
boundary conditions generally contains a variety of mean forces and mean flow 
phenomena that have nothing to do with wave dissipation. Among the latter are 
mean flow contributions of the Stokes-drift type, along with other transient, 
reversible mean-flow changes that depend on the continued presence of the waves 
(and on the choice of averaging operator) and that return to zero if the waves 
propagate out of the region of interest. Such mean effects are uniformly bounded, as 
time goes on, to be O(a2) in the wave amplitude a. In  addition, there are non- 
dissipative wave-induced mean motions that are not so bounded. One example is the 
Craik-Leibovich instability, which is in a category of its own and will be discussed 
briefly in $9. Other non-dissipative cases not uniformly bounded by O(a2) include 
various ‘long wave, short wave’ and ‘ low frequency, high frequency’ interactions, in 
which the dynamics of the mean state, as defined by the chosen averaging operator, 
is itself wavelike, allowing resonant buildup of oscillatory mean motions beyond 
O(a2) (e.g. Westervelt 1963, 1977; Mahony & Smith 1972; Grimshaw 1977, 1979; 
Dysthe & Das 1981, and references therein). 

A simple but striking example of the latter kind occurs when acoustic oscillations 
are driven in a closed fluid system that also has slower modes of oscillation, such as 
surface or internal gravity waves (Mahony & Smith 1972). For a demonstration with 
minimal apparatus one may use a commercial acoustic shaker and a large glass 
laboratory beaker holding four or more litres of water ; more quantitative versions of 
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the experiment have been done in rigidly enclosed air-water cavities (Franklin, Price 
& Williams 1973). When such a system is vigorously driven near one of its lowest 
resonant acoustic frequencies, and dissipation is small enough, a standing gravity 
oscillation may build up visibly and spontaneously. The gravity oscillation has 
frequency far lower than the acoustic driving frequency. In the beaker demonstration 
one often observes the gravest axisymmetric, zero-order Bessel-function mode. The 
sound field sees, in effect, a mean state varying slowly in time, causing the sound field 
itself to vary, with a certain phase lag, as conditions approach and recede from 
resonance. The slowly varying mean forces due to the sound waves are able to do 
work on the gravity oscillations, and cause them to grow exponential1y.t As with the 
other cases of this type, the mechanism has no essential dependence on dissipation ; 
indeed the demonstration will not work if there is too much dissipation. 

More extreme cases such as the ‘acoustic fountain ’ (see for instance Hertz & Mende 
1939; Bergmann 1954) can arise when the mean force due to the radiation stress 
divergence in a vertical beam of ultrasound encountering density or other 
inhomogeneities is so strong that it directly overcomes the gravitational restoring 
force associated with a stable density stratification. The enhancement of stellar 
winds by the action of acoustic radiation stresses (e.g. Pijpers & Hearn 1989, and 
references therein) is a somewhat similar case. Such cases are more straightforwardly 
a matter of O(a2) quantities themselves not being ‘small’ for the purpose a t  hand, 
where a is the sound wave amplitude, but they may also be counted as examples of 
significant wave-driven or wave-modified mean flows that have no essential 
dependence on wave dissipation. 

How, then, might one characterize the recognizably different class of wave-driven 
mean motions like those in figure 1, of which classical acoustic streaming is the 
prototype ? One would like to have a general conceptual framework 

(a )  that specifies what it is that distinguishes these classical phenomena from the 
non-dissipative phenomena just mentioned ; 

(b )  that includes, in principle, complicated three-dimensional flow geometries, not 
just those to which a simple spatial average and hence a ‘non-acceleration 
theorem ’ applies ; and 

( c )  that applies equally to classical problems and to the more complicated 
problems of stratified and/or rotating flow that are important in the Earth’s 
atmosphere and oceans. 

One is presumably close to such a characterization when one says, paraphrasing Lord 
Rayleigh, that the phenomena in question are ‘circulation changing’. But from a 
strictly logical viewpoint that statement is incomplete, since it could be said to 
include some of the non-dissipative phenomena just mentioned, such as those in 
which the mean motion has the character of a gravity wave. This is because not 
enough is said about the way in which the circulation is relevant. The next two 
sections present what seems to us to be an illuminating, possibly complete, and 
certainly very general way of stating the desired characterization. It proves 
convenient to use vorticity or P V  in place of circulation. In $$5-8 we discuss a few 
of the most basic examples explicitly, touching also on some of the points that are 
relevant to understanding the dynamics and chemistry of the atmosphere. 

t The most favourable condition for this to happen (with a phase lag less than half a gravity- 
wave cycle) is when the driving frequency is just above an acoustic resonance. This can immediately 
be understood, without detailed calculation, from the connection between radiation stress and the 
Boltzmann-Ehrenfest adiabatic invariance theorem (Brillouin 1925). 

I4 FLM 212 
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3. Conceptual framework : transport, balance and invertibility 
There are three key ideas. The first is that a typical effect of wave dissipation is 

to cause an irreversible transport of vorticity or P V  that would not otherwise have 
taken place. The irreversibility can arise in several ways, as will become clear from 
the examples. 

The second idea is that  the mean flows concerned are approximately ‘balanced ’ 
flows, in a sense illustrated by the slow evolution of solutions to stiff differential 
equations (c.g. Press et al. 1986). For instance the mean flows appearing in classical 
acoustic streaming problems are low Mach number flows, in the sense that the mean 
flow dynamics itself involves negligible acoustic oscillations. Again, the typical mean 
flows driven by dissipating internal gravity waves are quasi-horizontal, low Froude 
number flows involving negligible buoyancy oscillations (e.g. Bretherton 1969). If 
one were to draw the partial analogy with a mechanical system of masses and springs 
of varying stiffness, one would say that the mean flow dynamics is like the slow 
evolution of the mechanical system, with negligible excitation of free oscillations 
involving the stiffer springs. It is the idea of balance that distinguishes classical mean 
streaming and its analogues, and the effective wave-induced mean forces associated 
therewith, from the non-dissipative wave-driven mean motions and associated mean 
forces referred to near the end of $2. The latter mean motions can be described as 
wave-driven mean motions, but certainly not as wave-driven balanced mean 
motions. Their essence is, on the contrary, the unbalancing of the mean state by the 
direct excitation of wavelike mean motions. The acoustic fountain is an extreme case 
of this ; the mean flow can be thought of as resembling a continually forced, breaking 
gravity wave, driven by the radiation stress convergence associated with the 
propagation of a beam of sound waves through a density inhomogeneity. 

The third idea is prompted by the second, and connects it to the first. What is the 
most useful and general way of defining the notion of balanccd flow Z Arguably, the 
answer is simply to say that balanced flows are just  those fluid flows that are 
controlled by vorticity or ‘PV evolution. In other words, balanced flows are those 
fluid motions to which an ‘ invertibility principle ’ for vorticity or P V  applies, in the 
sense that the vorticity or P V  field can be inverted to yield the velocity field and any 
other relevant dynamical information. The Biot-Savart or inverse Laplacian type of 
vorticity inversion integral, for unstratified vortical flows in the zero Mach number 
limit, is merely the most familiar special case, corresponding to complete rigidity of 
the stiffer springs in the mechanical analogy. Other cases are discussed in the review 
by Hoskins et al. (1985) and in a forthcoming paper by the present authors (1990, 
hereafter MN). In  the geophysically important case of the P V  in a stably stratified, 
rapidly rotating fluid the basic insights go back to the pioneering work of Charney 
(1948) and Kleinschmidt (1950a, b, 1951), which was motivated by some of the 
meteorological problems recalled in 5 1 .  

The general notion of vorticity or P V  invertibility is by no means a trivial one, if 
only because the most accurate inversion operators are nonlinear a t  finite Froude, 
Mach or Rossby numbers, and also because inversion is then, almost certainly, an 
inherently approximate process, as discussed briefly in Hoskins et al. and more 
extensively in MN. In practice, however, the approximations involved can be 
astonishingly good, in comparison with what one might guess from a prima facie 
consideration of Froude or Mach number values. It is this that gives rise to the 
suggestion of usefulness combined with great generality. Figure 2 shows an example, 
obtained in the course of our recent work on atmospheric modelling. The system is 
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a shallow, hydrostatic layer of unstratified fluid with a free upper surface, on a 
hemisphere viewed in polar stereographic projection in a rotating frame of reference 
rotating with angular velocity 52 = 2n/(1 day). It was originally studied as a 
simplified model atmosphere, but can also be thought of, in the usual way, as a two- 
dimensional acoustic system, with sound waves in place of gravity waves, in a 
hypothetical ‘perfect gas’ with ratio of specific heats y = 2, and with density p 
replacing the layer depth h. The system has an invariant, Q ,  that  is materially 
conserved in the absence of viscosity : 

Q =  P / h  or P/P,  DQ/Dt=O,  (3.1) 

where 6 is the radial component of absolute vorticity and DIDt the two-dimensional 
material derivative. For want of any other name Q will be referred to indiscriminately 
as the PV both in the free-surface and in the compressible interpretation. 

Figure 2 (a) shows the velocity field (arrows) and the h or p field (contours) taken 
from a high-resolution numerical simulation of nearly inviscid evolution of this 
model fiuid system. The local Froude or Mach number M ,  defined as the ratio of the 
local flow speed ( u I  to the gravity or sound wave speed, takes values up to about 0.5. 
The local Rossby number R, defined as (u(/2LStsin#, where q4 is latitude and L is a 
length scale of the flow, is of course infinite a t  the equator. It reaches a local 
maximum of the same order as M ,  about 0.5, in the region of strong subtropical 
winds. The flow was set up by means of an artificial forcing, in a manner that need 
not concern us here except to say that care was taken to  apply the forcing smoothly, 
so that minimal gravity or acoustic wave activity was introduced as a direct result. 
Figure 2(b) shows the two-dimensional divergence field. Figure 2(c ,  d )  shows the 
associated distribution of Q ,  both in conventional contouring and in grayscale for 
better visibility. The smallest features are well resolved numerically ; a pseudo- 
spectral method is used, isotropically representing the fields using total spherical 
harmonic wavenumbers up to  106, corresponding to  a mesh size of the order of a 
degree of latitude. 

Figure 2 ( e ,  f) shows the results of a nonlinear inversion. The velocity, density and 
divergence fields were reconstructed, from the Q field alone, using an accurate PV 
inversion algorithm described in MN (p.v. for further detail). Comparison with figure 
2 (a ,  b)  shows that the invertibility principle applies with remarkable accuracy to 
this particular flow. Despite the not very small values of the local Froude, Mach and 
Rossby numbers, and the large departure from incompressibility (the density can be 
seen from figure 2(a,  e )  to vary by fractional departures 0.4 or more from its area 
mean), almost all the detail is recovered by the inversion, even in the divergence field. 
It follows that the flow is accurately balanced, in the sense proposed above, even 
though the fact that  0.4 is hardly small compared with unity means that a simple 
incompressible or inverse Laplacian inversion applied to Q would be grossly 
inaccurate. (An explicit computation, not shown, gives maximum velocities typically 
wrong by a factor - 2.) 

This particular example supplements a more extensive set of examples given in 
MN. The impression given by figure 2 is typical of all the other examples, 
which include cases with local Froude or Mach numbers up to 0.7 albeit not 
simulated at such high spatial resolution. The discussion in MN also describes some 
tests of cumulative accuracy, in which the exact evolution over several characteristic 
eddy times was compared with the evolution of a corresponding ‘balanced model’ 
defined by alternately inverting, and time-stepping (3.1). Even with maximum local 
Froude, Mach and Rossby numbers in excess of 0.7,  the evolution was reproduced 

14-2 
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FIGURE 2. For caption see facing page. 
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with an accuracy not far short of that in figure 2. The fact that the balance and 
inversion concepts seem so remarkably accurate is presumably connected with 
another, better known fact, namely the equally remarkable weakness of spontaneous 
emission of acoustic or gravity waves predicted by the Lighthill theory of 
aerodynamic sound generation (e.g. Crighton 1975, 1981). 

Our results to date, then, in combination with the Lighthill theory, strongly 
encourage the belief that the concept of balanced flow, as defined above, is far more 
widely applicable than one might imagine from the standard approximate inversion 
theories that restrict attention to Mach, Froude and/or Rossby numbers much less 
than unity. This belief has yet to be fully tested either in the case of three- 
dimensional homentropic (unstratified) vorticity inversion a t  substantial Mach 
numbers, or in the case of the multi-layer or continuously stratified fluid systems 
that are of interest in connection with applications to the atmosphere and oceans. 
Limitations on applicability will be encountered at some stage, of course; for 
instance restrictions on vertical structure are to be expected in the continuously 
stratified case, since if arbitrarily fine vertical scales were to be allowed then internal 
Froude numbers would tend to become large. I n  practice such structures might tend 
to be self-limiting inasmuch as large internal Froude numbers usually go with small 
Richardson numbers, so that there will tend to come a stage a t  which Kelvin- 
Helmholtz and other shear instabilities set in.1 

It should be remembered, also, that the other types of wave-induced mean forces 
illustrated in $2 will perturb the balance condition and therefore the inversion 
operator. This is related to the distinction between ‘non-interaction ’ and ‘non- 
acceleration ’ explained in Andrews & McIntyre (1978, equation (5.9) ff.). Such effects 
will usually degrade the accuracy of the balance and invertibility concepts by a 
uniformly bounded O(u2) amount when waves are present. What this would mean 
quantitatively would have to be checked in particular problems. Important 

t Most of the available results on YV inversion in stratified fluids do not address any of these 
questions, since they are restricted to rapidly rotating cases where both the Froude and Rossby 
numbers are small enough to justify approximation schemes based on quasi-geostrophic theory and 
its refinements. This is reviewed in Hoskins et al. (1985) ; and see also, for example, Mattocks & 
Bleck (1986). A recent paper by Staquet & Riley (1989) breaks new ground by treating the non- 
rotating case, but still only for small Froude number. As far as we know, no excursion beyond these 
parameter regimes has yet been attempted. 

FIGURE 2. Demonstration of balance and invertibility in a compressible flow with substantial 
density variations, from a high-resolution numerical experiment on flow on a hemisphere. This was 
motivated as an atmospheric model but is equally well interpretable as a compressible two- 
dimensional flow in a hemispherical shell. The system is a shallow water free-surface model with 
area-mean depth 2 km and corresponding gravity wave speed 140 m s-l, or equivalently a fictitious 
‘perfect gas’ with ratio of specific heats y = 2 and sound speed 140 m s-l a t  mean density. Solid 
contours show positive values, long dashed contours negative, and dotted contours zero. The 
projection is polar stereographic; the radius of the hemisphere is 6371 km. ( a )  : Arrows show the 
velocity field on the scale indicated; contours show departures of density or layer depth from 
the area mean value. The contour interval is one twentieth of the mean; in the two-dimensional 
compressible system it can also be regarded as the anomaly in the square root of the pressure. ( b )  
Divergence field contoured at intervals of 0.6 x s-l. (c, d)  The quantity Q defined in equation 
(3.1). (c )  is contoured at interval 1 x lo-* m-l s-l in units appropriate to the first formula in (3.1). 
The shading in the contour plot highlights values lying between 4 and 6 of these units. The 
greyscale representation of the same information in (d) is monotonic from light to dark, from zero 
at the equator to a maximum value of 1 x lO-’m-’s-l near the pole. ( e , f )  As ( a , b ) ,  but 
reconstructed from Q alone using an accurate nonlinear PV inversion algorithm. 
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cumulative effects seem unlikely, except when the timing of the mean forces is such 
as to drive a departure from balance resonantly, as in the beaker experiment 
described in $2. As already suggested, such phenomena, as well as the intrinsic 
limitations of the balance and invertibility concepts a t  substantial mean-flow Mach 
or Froude numbers, are part of what sets the limitations on how far we can generalize 
the notion of classical mean streaming. A further possible effect on inversion operators 
for stably stratified fluid systems is wave-induced diabatic heating, which can change 
the reference stratification used in the inversion. 

It remains to define the notion of vorticity or PV transport in a suitably general 
way. This is done in the next section, after which we proceed to the explicit examples. 

4. The transport of vorticity or PV and the effective mean force 
The exact, general conservation properties of vorticity and PV are presumably 

familiar to many investigators, although as far as we know they have not been 
systematically discussed together, in full generality, except in a recent pair of papers 
by Haynes & McIntyre (1987, 1990, hereafter HM; 4.". for history). To recapitulate 
briefly, two basic kinematical properties of the vorticity vector are first that, away 
from boundaries, vorticity is always exactly conserved, and second that the net flux 
or transport of vorticity can always be taken to be directed exactly a t  right angles 
to the vorticity itself. This is true for an arbitrary equation of motion 

au - = -x, 
at 

since taking the curl shows at once that the i th component Ci of the vorticity vector 
( = V x u always satisfies the conservation relation 

a a  --ci+-zi, = 0, 
at ax, 

where the components Z,, of the vorticity flux or transport tensor Z can be expressed 
as 

' 6 5  = E i / k X k  ; (4.3) 
Z is an antisymmetric tensor, verifying what was just said about the direction of the 
flux or transport. If the frame of reference is rotating with constant angular velocity 
51 then the same conservation equation is satisfied also by the ith component of 
the absolute vorticity = ( + 251. For motion under a conservative gravita- 
tional-rotational potential @ and an arbitrary body force F per unit mass, we have 
explicitly, in (4.1), 

where a = l/p, the specific volume, and p is the pressure. Then (4.3) expands to 

X =  u.Vu+2Qxu+aVp+V@-FF, (4.4) 

after ignoring identically non-divergent contributions like Ei5k a@/ax,. Equivalently, 

(4.5b) 
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As discussed in HM, the PV inherits a corresponding pair of exact, basic 
properties. These are, again, exact conservation, and a restriction on the directions 
in which net transport can take place, to be referred to below as the 'impermeability 
theorem'. The ' P V '  as defined in equation (3.1) satisfies the two-dimensional 
counterpart of (4.2) and needs no further discussion ; the exact (Ertel) definition of 
PV for a continuously stratified fluid is 

Q = p p .  ve, (4.6) 
where O is potential temperature, or potential density or other appropriate measure 
of buoyancy such that 

The Q defined by (4.6) is the amount per unit mass of an exactly conserved quantity 
whose conservation relation can be written in the form 

0: = p-l = func ( 0 , p ) .  (4.7) 

a 
-(pQ) + V. J = 0 ;  
at 

the conservation form can be seen at  once by (i) replacing Ci in (4.2) by = eijk 
&:/ax,, where u& is the absolute velocity u + B  x x, (ii) taking the scalar product of 
aO/ax, with (4.2), and (iii) noting the vanishing of the double inner products of 
the antisymmetric tensors Z, and eijk u: with the symmetric tensors a20/i3xi axj and 
a30/axr axj at. The impermeability theorem can be demonstrated in a similarly general 
way. It is noteworthy that (4.7) is not required; for further discussion see HM $5. 
Rather than repeating that discussion we note, instead, an explicit form that besides 
making the impermeability property evident will also be useful in other ways. 
Making use of (4.5 b ) ,  again ignoring identically non-divergent contributions, and 
now using (4.7), one can obtain, after a little manipulation, a form of (4.8) in which 

J = / d ' Q  + pu"Q - He" - F x V6 ; (4.9) 

see also Haynes & McIntyre (1990). Here H = DO/Dt, a measure of heating rate per 
unit mass, or other buoyancy forcing, while 

and 

(4.10a, b )  

(4.10~) 

It can be seen that the last three terms in (4.9) represent vectors that  are exactly 
parallel to the local constant4 surface. The first term, by contrast, is pQ times the 
vector ueL, which is just the velocity of the 8-surface normal to itself. It follows that 
a point moving with velocity J / (pQ)  always remains on exactly the same 0 surface, 
even when the fluid is itself moving through that surface, as occurs when the heating 
H 4 0. This says that the 0 surfaces behave as if they were completely impermeable 
to the PV - or, more precisely, impermeable to the additive, extensive, exactly 
conserved quantity whose amount per unit mass is the PV - even when the heating 
H makes the same 19 surfaces permeable to mass and chemical substances. This is the 
result we call the 'impermeability theorem ' and is the property of PV transport that 
corresponds to the antisymmetry property of the vorticity transport. It was derived 
in several other ways in HM (and was apparently new at the time); the present 
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version is the most convenient form here. We recognize of course the well known non- 
uniqueness of the flux or transport in a conservation relation ; for instance one could 
add any identically non-divergent field to (4.5) or (4.9). But this would obscure 
a strikingly simple and useful fact about vorticity and PV transport. 

The relevance of (4.5) to classical wave-induced homentropic mean flows can now 
be stated as follows. Let the mean or slowly varyingpart  of the wave-induced 
contribution to the vorticity transport be denoted by Z”.  We shall see an example 
in the next section of how this arises from quadratic correlations on the right of (4.5). 
To any such vorticity transport there always corresponds a mean force per unit mass 

(4.11) 

that, if applied to the fluid in the absence of waves, would produce the same vorticity 
transport. It would therefore have the same effect as the waves on any balanced 
mean flow. We may therefore identify i t  as the relevant ‘effective mean force’. I ts  
effect on the vorticity transport can be verified to  be equivalent to  a contribution z” 
by substituting the expression (4.11) into the Fk term in (4.5). In  so far as the 
response to this effective mean force remains balanced, it represents the sole effect of 
the waves on the mean flow. This neglects the uniformly bounded, O(a2) perturbations 
to  the vorticity inversion operator discussed earlier. Note that ignorable, identically 
non-divergent contributions to  Z produce ignorable, irrotational contributions to the 
effective force. 

Similarly, the relevance of (4.9) to  classical wave-induced stratified mean flows can 
be stated in terms of the mean or slowly varying part of the wave-induced 
contribution to the P V  transport. Let this contribution be J”. We shall see an 
- example in $6 of how this arises from quadratic correlations on the right of (4.9), with 
J” directed along the mean or basic stratification surfaces. To any such PV transport 
there always corresponds a mean force per unit mass 

(4.12) 

also directed along the stratification surfaces, that again would have the same effect 
as the waves upon the PV transport and therefore, again, the same effect on any 
balanced mean flow. We may therefore identify i t  as the relevant ‘effective mean 
force’ for stratified flow, in exactly the same way. I ts  effect on the PV transport can 
be verified by substituting the expression (4.12) into the F term in (4.9), with the 
basic gradient G = Ve substituted for VB. 

It will have been noticed incidentally that, in talking heuristically about ‘means ’, 
we have not yet tried to distinguish between Eulerian means, Lagrangian means, and 
basic flows in other senses that might be useful. This is partly because the 
correlations involved in (4.11) and (4.12) are robust, and insensitive to  what kind of 
mean is taken?, and partly because we are interested in effects that are cumulatively 
much larger than Stokes corrections and other uniformly bounded O(a2) effects. The 
distinction does turn out to be critical, however, for our third example (Rossby 
waves), most notably in the case of thermal dissipation ($8). In order for the 
thermally dissipating Rossby-wave case to fit well into the present conceptual 
framework we shall find i t  best to employ averaging of a hybrid sort, along undular 
&surfaces but, most importantly, Eulerian in plan view, as described in $8. 

The notion that a disturbance-induced mean force, or certain rotational 
contributions to it, can usefully be thought of as equivalent to an averaged flux or 

t As long as the mean has the relevant additivity property, see below ($45, 6). 
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transport of vorticity or PV, is not of course new. It has long been familiar in certain 
special cases, particularly studies of incompressible, two-dimensional turbulence, 
and goes back to Taylor (1915); see also, for example, Goldstein (1938, $83). The 
same idea has found extensive use in geophysical fluid dynamics within the 
framework of quasigeostrophic theory for a stably stratified, rapidly rotating fluid 
(e.g. Bretherton 1966, Dickinson 1969a, Green 1970, Rhines and Holland 1979, 
Edmon et al. 1980, Dunkerton et al. 198l), which theory has validity as a first 
approximation when the Froude and Rossby numbers are both small. The interest 
here is in trying to probe the ultimate limitations of the idea; and as we have just 
seen, the limitations are to be found not in the vorticity or PV transport properties 
themselves, which can of course be formulated exactly, as was done above, but only 
in the limitations on the concepts of balance and invertibility that allow the 
identification of the expressions (4.1 1 )  and (4.12) as ‘effective mean forces’. 

We now turn to the specific examples, confining ourselves in each case to the 
simplest relevant example that suffices to illustrate the principle involved. 

5. Upgradient vorticity transport by dissipating sound waves 
When reminded of the easily observable jets driven by beams of ultrasound, 

sometimes called the ‘quartz wind’ or ‘sonic wind’ (e.g. Lighthill 1978a, 6) it  is 
natural to ask “where does the vorticity come from ? ” The jets start more or less 
from rest when the sound source is turned on; and the vorticity clearly cannot all be 
introduced at a boundary. Figure 3 shows schematically a perspective view of some 
of the circular vortex lines in an axisymmetric quartz-wind jet directed along the 
x-axis. The creation of such a vorticity pattern from nothing evidently requires 
the vorticity to be transported up its own gradient. 

Let us define p in (4.5) to be a function of a alone (a  denoting lip, as before) ; then 
by definition all the irreversible, dissipative effects, whether described as thermo- 
dynamical or quasiviscous, are incorporated into the force F. The p term in (4.5), 
so defined, evidently produces only an identically non-divergent contribution to the 
transport Z ,  where therefore does nothing to the vorticity distribution and can be 
ignored. Following Lighthill (19786, $1.13), and confining attention at first to an 
idealized plane sound wave travelling in the positive x- or l-direction, we may write 
F as a fluctuating force oriented in the same directio6 and equal to the one- 
dimensional divergence of a normal stress -Kap/at, where K ,  the ‘diffusivity of 
sound’, may be taken as a constant for our purposes. Taking a/ax of - K a p / a t  and 
substituting the result into the Fk term in (4.5), with k = 1, we obtain for the wave- 
induced vorticity transport 

In  a plane, sinusoidal, progressive sound wave, the fluctuations in a are in antiphase 
with those in p and therefore with those in a2p/ax at, since the phase speed is positive. 
Thus aa2p/axat fluctuates about a negative mean. This is evidently a robust result, 
in the sense that it would be true on the basis of any relevant definition of ‘mean ’, 
that is to say a definition that preserves the additivity of the vorticity transport 
across control surfaces subdivided into area elements. At all locations in the wave 
where a2p/axat is negative, a is high, and where a2p/axat  is positive, a is low; and 
a2p/axi3t has zero mean for any wave, sinusoidal or not, that is periodic in x or in t 
or in both. 
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FIGURE 3. Perspective sketch showing three of the vortex lines in an axisymmetric ‘quartz wind’ 
jet. The central arrow indicates both the sense of the beam of ultrasound generating the jet, and 
also the sense of the jet itself. 

Now consider the laboratory case of a confined beam of ultrasound. By what has 
just been said, the qualitative sense of the wave-induced vorticity transport will still 
be given by the expression (5.1), in any situation where a plane sound wave serves 
even as a rough first approximation. (In some cases of very short, small-amplitude 
waves and approximately parallel beams, the waves may be nearly plane in reality, 
and (5.1) a quantitatively useful approximation as well.) The negative sign of 
aa2p/axat shows that 2; has the sign of -eli i ,  meaning that positive 3-vorticity 
(z component) is transported in the positive 2-direction or y-direction, and negative 
2-vorticity (y component) in the positive 3-direction or z-direction. The transport 
converges in an annular region surrounding the centre of the beam. This creates 
vortex loops oriented in the sense of a right handed screw along the direction of 
propagation, as suggested in figure 3-corresponding to an effective mean force 
(4.11), and hence a jet, in that same direction. 

It is worth re-emphasizing how neatly the foregoing handles all the second order 
mean pressure effects that enter into, and complicate, a description in terms of 
radiation stresses. They are dealt with a t  a stroke by the remark already made, that 
any contribution to the vorticity transport 2 ,  of the form 

a func (a) 
‘ijk a 

is identically non-divergent and is therefore a ‘do-nothing ’ transport, which can be 
ignored. 

It is not difficult to convince oneself that none of the other terms on the right of 
(4.5) can have nearly as large an effect, if only because the basic acoustic motion is 
irrotational to a first approximation, as well as nearly one-dimensional. It is only the 
Fk term that can create a vorticity pattern out of nothing. The order-of-magnitude 
verification is omitted for brevity. 

Another way of appreciating the robustness of the effect under discussion is to 
imagine an experiment in a fluid with spatially variable dissipative properties, in 
which the waves propagate a long way without dissipating and then encounter an 
isolated region W with high local dissipation. (The analogue of this actually happens 
all the time on ocean beaches, and to some extent in the experiment of figure 1 ( b ) . )  
Such thought experiments make it particularly clear that it is the correlation 
expressed by (5.1) ff., and not, for instance, any resultant O(a2) mean viscous force 
on the region 9, that is important. For instance the resultant force from viscous 
stresses on a surface enclosing the region can be made arbitrarily small (at least in 
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the imagination) simply by making the viscosity on the enclosing surface arbitrarily 
small, while continuing to dissipate the waves within W and continuing to generate 
mean streaming via (5.1). One such thought experiment is to imagine the waves to 
be dissipated purely thermally. 

To check that (5.1) does correspond to the standard formulae associated with 
the quartz-wind problem, we note that for a sinusoidal wave the effective force 
- K a  a2p/ax  at per unit mass has the mean value 

Here w ,  k and c are the frequency, wavenumber and sound speed, and primes denote 
fluctuations. The overbar represents the time average, p the undisturbed density, 
E = - p c 2 ~  > 0 the acoustic energy or wave-energy, E its dissipation rate (inverse 
timescale Kk’), and q1 = E/pc the corresponding dissipation rate of quasimomentum 
or pseudomomentum ql. These are defined positive for positive dissipation. 

Before turning to the case of internal gravity waves, we note briefly an example 
that brings out the theme of this paper is another way and shows clearly why it is 
worth going to the trouble of thinking in terms of vorticity. In a non-dissipating 
beam of sound in strictly irrotational, homentropic flow, the mean density can be 
shown to be less than the density in the surrounding fluid, because of the dilatational 
part of the radiation stress, i.e. the isotropic, a,, term proportional to the 
thermodynamic derivative a log c / a  log p (e.g. Brillouin 1925 ; Bretherton 1971). More 
precisely, the time-averaged volume of a material fluid element of given mass can be 
shown to be greater within the beam than outside it, by an amount that is O(u2) and 
proportional to a log c / a  logp. There is an important piece of underwater acoustic 
technology, the parametric acoustic array, that relies partly on this effect (Westervelt 
1963, 1977; McIntyre 1981). It might be thought that the fluid in the beam would 
therefore be buoyant, and that a vertical mean motion would ensue. But such a mean 
motion would involve vorticity, and would therefore be impossible, as long as the 
waves are not dissipating. Then Kelvin’s circulation theorem, and (5.2), apply, and 
the motion remains irrotational. The result can be confirmed by a full analysis using 
the radiation stress concept (Bretherton 1971, $6;  Andrews & McIntyre 1978, 58.4). 
In the case where the beam is directed horizontally, for instance, what happens is 
that the buoyancy force, although real enough, is exactly cancelled by a radiation 
stress divergence due to the refraction, hence concave-upward bending, of the beam 
in the slight vertical gradient of sound speed caused by gravity. 

6. Upgradient PV transport by dissipating internal gravity waves 
Figure 4 shows a mean flow induced by internal gravity waves that is a close 

analogue of the quartz wind. The waves are arriving from below and dissipating at 
the level shown, in a region of limited extent in y .  They are periodic in x, and 
progressive in the positive x direction, i.e. from left to right. They cause a transverse, 
upgradient transport of PV along &surfaces, in the sense suggested by the large open 
arrows. The process of creating such a pattern of positive and negative anomalies in 
the exactly conserved quantity, PV, may be compared to the creation of dipolar 
patterns in the exactly conserved quantity, electric charge (Obukhov 1962)) during 
electron or positron ‘pair production’. The resulting mean flow is very like that 
generated in the Plumb-McEwan experiment described in $2. 

The correlations on the right of (4.9) that give rise to this PV transport are again 
robust, being insensitive to details of the averaging, for instance whether we average 
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FIQURE 4. Sketch showing the planform of a jet induced by dissipating internal gravity waves, 
together with the associated PV anomaly pattern (shown by the plus and minus signs) and the 
upgradient PV transport that produces it (large open arrows). 

strictly horizontally, or along undulating $-surfaces, provided only that additivity 
over subdivided areas of control surfaces such as the xz plane is preserved. TO see how 
the correlations arise, take the simplest relevant model, namely a plane internal 
gravity wave with disturbance velocity u' and potential temperature 8' proportional 
to exp[ik(z-cct)+mz], with k > 0, m < 0 and horizontal phase speed c > 0. This is 
the case where phase progresses to the right and downwards, and group velocity 
(perpendicular to phase velocity and collinear with u') is directed to the right and 
upwards. 

If the waves are dissipating viscously, then the viscous force F per unit mass is 
in antiphase with u' = (u', 0, w') and is given by 

F = -vIkI'd, (6.1) 

where v is the kinematic viscosity and lkI2 the squared magnitude of the wavenumber 
k = ( k ,  0 ,m) .  The fluctuation V8' in VB on the right of (4.9) is 

where and 9 are unit vectors in the k- and y-directions respectively, N 2  = gi?-l(G( 
with g the gravity acceleration and [GI = dB/dx, so that N is the buoyancy or 
Brunt-Vliisala frequency of the basic stable stratification i?(z);  e is taken 
approximately constant when not differentiated (local Boussinesq approximation). 
Thus F and VB' are perpendicular and in phase, and the wave-induced contribution 
on the right of (4.9) is 

v8N 
9 

J" = -F x VB' = lu'1'f. (6.3) 

Thus the effective mean force per unit mass given by (4.12) is 

where 1 is a unit vector in the x direction. This viscous contribution is the only 
significant contribution in the Plumb-McEwan experiment. 

If on the other hand the wave the wave dissipation is purely thermal, as may be 
an appropriate model in some astrogeophysical applications, then the relevant 
contribution on the right of (4.9) becomes 

J" = -H'c$, (6 .5)  
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where 6 is the vorticity due to the wave motion, defined by 

6"" = v )( u/ = 69 
(to leading order in wave amplitude a ) .  H is the diabatic rate of change of 8', 
for instance proportional to -8' in a Newtonian cooling model or proportional to 
V28' = -lkI28' in a thermal diffusion model. If we write H = -A# ( A  real) and use 
the facts that the amplitude of 6 is Ikl times the amplitude of u' in magnitude, and 
that 6 is in phase with 8' = g-lgNr/Ikl, we see that the effective mean force per unit 
mass becomes 

(6.6) 

A corollary is that a thermally excited wave gives rise to a mean force in the opposite 
sense, as was pointed out by Lindzen (1973). 

It remains to verify that the expressions (6.4) and (6.6) are equal to the horizontal 
projection of 0, where 0 is the appropriate rate of dissipation of quasimomentum or 
pseudomomentum q. In  the plane-wave approximation we may take q = Ek/pw, 
where w = kc and E is the wave-energy density, 

h 
N Feff = - Ikl mi. 

whose mean dissipation rates for the viscous and thermal cases are respectively 

and 
E = vijkl2m, 

from (6 .7) ,  defined positive as before. Now i * k  = k ,  and so 

( 6 . 8 ~ )  

(6.8b) 

(6.9) 

from the dispersion relation w = Nk/Ikl. Together with (6 .8a,  b )  this verifies that 
(6.9) agrees with (6.4) and (6 .6) .  

The net effect of the inhomogeneous turbulence in a breaking internal gravity wave 
must also be to cause upgradient, or gradient-independent, transport of PV along 
0-surfaces. We know from laboratory experiments that breaking gravity waves do 
induce mean flows like that in figure 4 - a well documented example is reported in 
Delisi & Dunkerton (1989) - and there is every reason to suppose that the same thing 
happens at arbitrarily high Reynolds numbers. There is a large body of corroborative 
evidence from observations of momentum fluxes in atmospheric gravity waves, 
reviewed in Palmer et at. (1986, $3 ) .  The implication is that irreversible, upgradient 
PV transport along 0-surfaces must be brought about by contributions to (4.9) from 
molecular diffusion a t  the turbulent microscales. This is very different from the 
assumption, sometimes made in the meteorological and geophysical literature, that 
PV behaves like a gaseous chemical tracer when turbulent mixing is taking place. 
The effects of breaking internal gravity waves can be summarized epigrammatically 
by saying that they transport entropy downgradient across O-surfaces,t but P V  
upgradient, or in a gradient-independent sense, along 0-surfaces. 

t Albeit often rather weakly, as discussed in McIntyre (1987, 19893) and references therein: see 
also the recent laboratory evidence in Delisi & Dunkerton (1989). 
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7. Breaking Rossby waves and the global atmospheric circulation 
Rossby waves are themselves balanced motions, in the sense required for P V  

inversion. The restoring mechanism giving rise to wave propagation is associated 
with material conservation of PV, and is brought into play when fluid elements are 
displaced across a basic isentropic gradient of PV, i.e. a gradient of P V  on 8-surfaces 
(e.g. Hoskins et al. 1985, $ 6 ~ ) .  This basic gradient, whose direction will be designated 
‘northward ’, gives the problem a rather different character from those considered so 
far. One aspect is that the irreversible PV transport due to dissipating waves tends 
to be down the background gradient, i.e. ‘southward’ along the @surfaces. 

The most straightforward illustration is the ‘breaking ’ of Rossby waves, in which 
the PV is simply rearranged advectively in a more or less irreversible way. The PV 
pattern in figure 2 ( c ,  d )  provides a snapshot illustrating this phenomenon in the 
single-layer model atmosphere, at very large although not wholly unrealistic 
amplitudes. The basic PV gradient is visible as the pole-to-equator grayscale 
gradient in figure 2 (d ) ,  with most of it concentrated into a highly contorted band of 
strong gradients in middle latitudes. By contrast, the opposite extreme, a small- 
amplitude Rossby wave describable by linear theory, would have P V  contours lying 
nearly east-west along latitude circles, and departing from their basic east-west 
orientation by gentle sideways undulations only. Breaking Rossby waves may be 
compared and contrasted with breaking gravity waves. Whereas the latter tend (i) 
to generate three-dimensional turbulence, (ii) to deform isentropic surfaces 
irreversibly, and (iii) to rearrange entropy downgradient in the vertical, break- 
ing Rossby waves tend (i) to  generate layerwise-two-dimensional or so-called 
‘geostrophic’ turbulence, (ii) to deform PV contours irreversibly, and (iii) to 
rearrange PV downgradient in the ‘north-south ’ direction, along isentropic surfaces. 

In the real atmosphere, as in models like that of figure 2, Rossby wave breaking 
appears to be a very common, and often important, process. Other processes such as 
radiative heat transfer may interact significantly with the advective rearrangement 
(e.g. Butchart & Remsberg 1986; Butchart 1987; HM $3,  O’Neill & Pope 1987; Salby 
et al. 1989), but often do not drastically change its nature, the net effect being some 
amount of wave dissipation that is partly due to  the irreversible advective 
rearrangement of P V  down to fine spatial scales -the kind of turbulent random- 
straining process discussed by Bat,chelor (1952, 1959), Cocke (1969), Kraichnan 
(1974, 1975) and others - and partly due to the radiative heat transfer. The pattern 
of mean forces due to breaking or thermally dissipating gravity waves, for instance 
mountain waves, may also interact with the whole process. The conservation and 
‘impermeability’.properties discussed in HM and in $4 imply, once again, that the 
net effect of all this on the PV field can be described in terms of a transport of PV 
oriented exactly along isentropic surfaces. 

The simplest theoretical paradigm for the Rossby wave breaking process is that 
provided by nonlinear Rossby-wave critical layer theory, in which most of the wave 
breaking is confined to a narrow zone or ‘critical layer’ oriented east-west and 
surrounding the ‘critical line’, or location a t  which the intrinsic wave frequency 
vanishes because of shear in a pre-existing east-west mean Aow. In  the cases most 
thoroughly studied, the fluid system is taken to be simple two-dimensional inviscid 
vortex dynamics, i.e. the dynamical system associated with (3.1) but a t  limitingly 
small Froude number so that h becomes constant and Q and 6 become the same 
thing. Although the resulting model is not closely realistic for the atmosphere or 
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oceans, the problem keeps the same basic qualitative structure while becoming 
relatively tractable mathematically, in part because it has a very simple PV 
inversion operator, the inverse Laplacian (giving a stream function for the velocity 
field when applied to Q ) ,  and in part because of the spanwise scale separation between 
the narrow north-south scale of the main breaking region and the much broader scale 
of its (relatively undular) surroundings. 

The outcome is that one can describe the entire nonlinear evolution in a very clear- 
cut way, in terms of the interaction between the two regions, using the method of 
matched asymptotic expansions. The first such analysis, in a special case giving the 
simplest self-consistent model example of the Rossby wave breaking process, was 
given in the pioneering work of Stewartson (1978) and Warn & Warn (1978), 
hereafter ‘SWW ’. The importance of the problem is its status as one of the few self- 
consistent thought experiments within which one can explore some aspects of the 
kind of highly inhomogeneous ‘ wave-turbulence jigsaw puzzle ’, involving neigh- 
bouring undular and wave breaking regions, that seems typical of large-scale oceanic 
and atmospheric fluid motions. It also serves, incidentally, as a particularly clear 
illustration of the way in which downgradient PV transport can, indeed, take place 
in geophysical fluid systems, despite the seeming paradoxes that arise in thought 
experiments where PV mixing is considered without taking into account the 
possibility of an associated radiation stress, or wave-induced momentum transport 
from outside the mixing region (e.g. Stewart & Thomson 1977). A detailed discussion 
of the nature of the interaction between the regions, both in mathematical and in 
physical terms, can be found in the paper by Killworth & McIntyre (1985), with 
emphasis on the way in which the wave breaking region contrives to absorb just the 
amount of momentum required by the downgradient PV rearrangement. 

Even in the idealized context of the critical layer theory, the details of the wave 
breaking process can be very complicated, in cases less special than that of SWW. 
Figure 5 (a) shows the Q field in an example where small-scale instabilities have been 
allowed to grow and play their part in the evolution, from a recent and comprehensive 
study of the problem by Haynes (1989). Substantial irreversible rearrangement of 
the Q field is taking place. Figure 5(b) shows the Eulerian-mean Q profile together 
with the original, undisturbed Q profile (shown dashed), and figure 5 (c) the resulting 
change in the Eulerian-mean flow. Qualitatively similar mean-flow changes in the 
same sense (not shown here) are obtained both in the SWW problem and in more 
realistic, large-amplitude examples like that of figure 2. In an Eulerian average taken 
around latitude circles, in the case of figure 2, there is a substantial mean westward 
flow in the tropics, where the PV has been rearranged most drastically by the wave 
breaking. The numerical experiments show that this mean flow was not present 
initially and that i t  is generated in fundamentally the same way as in the SWW 
problem and in the critical-layer problem of figure 5, the only difference being that, 
because the wave amplitude is so much larger, the irreversible PV transport and 
mean flow change take place over a much broader region. Another such large- 
amplitude example is documented in greater detail in a forthcoming paper by Juckes 
et al. (1990; see also Juckes & McIntyre 1987). 

Figure 5(c) and the other examples mentioned remind us, among other things, of 
the well known one-signedness of the effective mean force and irreversible mean-flow 
tendency that result from Rossby-wave breaking. Inasmuch as the PV transport 
tends to be downgradient and therefore southward, the effective mean force tends to 
be westward (recall (4.12)). This fact is central to understanding many aspects of the 
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FIGURE 5. (a) Contours of Q or in the narrow wave breaking or critical layer region in an inviscid, 
nonlinear Rossby-wave critical layer simulation like those described in Haynes (1989), except at  
higher numerical resolution. A combination of analytical and numerical techniques is used (both 
here and in the reference cited) in order to achieve this resolution. The width of the critical layer 
region is exaggerated for clarity. The contours in the central region of moderate values of Y ,  the 
stretched y or northward coordinate, are being irreversibly deformed to an extent that leads to a 
substantial irreversible rearrangement of Q and hence a substantial change in the, eastward mean 
flow fi(Y). (6) Eulerian-mean initial (dashed) and present (solid) Q(Y) profiles, differing by @(Y)  
say. (e) Eulerian-mean flow change &( Y) t h a t  results from the rearrangement. I n  this simple model 
the inversion operator that gives Sa in terms of a& is simply minus the y-integral of SQ. 

global-scale atmospheric circulation, including not only the ozone and chloro- 
fluorocarbon problems but also, for instance, the distribution of prevailing surface 
winds, and the related fact, once regarded as one of the major enigmas in the 
atmospheric sciences (e.g. Lorenz 1967, pp. 85, 150), that angular momentum is 
observed to be transported against its own mean gradient in the subtropical 
stratosphere and upper troposphere (e.g. Gill 1982, $8 13.9, 13.10; Hoskins et al. 1985, 

It is beyond the scope of this paper to  discuss in detail the role of the various wave- 
induced mean forces in the three-dimensional global circulation and the resulting 

§§W 9). 
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transport of chemical constituents - for recent discussions of different aspects see for 
instance WMO (1985), Fels (1985), HM, Andrews et al. (1987), Dunkerton (1989), 
McIntyre (1989a, b ) ,  and Haynes et al. (1990) - but one can say briefly that their 
importance for the ciroulation stems from the fact that the Earth is a rapidly 
rotating planet. Rapid rotation means here that the distribution of azimuthally 
averaged angular momentum in the atmosphere is dominated by the Earth’s 
rotation, in extratropical latitudes. Systematic wave-induced or other mean forces 
give rise to systematic mean motions across the constant angular momentum 
surfaces. The mean vertical motions needed for mass continuity are important, in 
turn, in carrying chemical constituents between the lower atmosphere and the 
photochemically most active regions above about 25 km, and hence, for instance, in 
determining the rate of destruction of man-made chlorofluorocarbons introduced into 
the lower atmosphere. 

The adiabatic heating and cooling associated with the same vertical motions also 
hold temperatures T away from their radiatively determined values Tad, a notion 
that makes qualitative sense (even though Tad is itself somewhat affected by the 
transport of chemical constituents) because of the substantial magnitude of the 
typical temperature anomaly (T- Tad) and because of the generally relaxational 
character of radiative heating and cooling, which broadly speaking has a tendency 
to reduce IT- Tad[. This set of ideas goes back to the pioneering work of Dickinson 
(19694 and appears to be especially pertinent in the stratosphere and mesosphere, 
indeed throughout the ‘middle atmosphere’ up to 100 km or so (e.g. WMO 1985, 
chapter 6). Current thinking assigns a dominant role to upward propagating Rossby 
waves and related types of large-scale disturbances ; internal gravity waves are 
believed to be the next most important except at  very high altitudes, above the 
stratopause (> 50 km), where they tend to become the dominant type (e.g. Fritts 
1984, 1987 ; Andrews et al. 1987, and references therein). Both kinds of waves are 
envisaged as being generated largely by nonlinear processes in the troposphere. Many 
of the wave sources involve distinctively tropospheric effects such as cumulonimbus 
convection, flow over topography, land-sea contrasts, and large-scale cyclogenesis, 
itself related to Rossby-wave dynamics and also dependent on the strong surface 
potential-temperature and humidity gradients typical of the lower troposphere (e.g. 
Gill 1982; Hoskins et al. 1985, $6). 

8. Thermally dissipating Rossby waves and the Antarctic ozone hole 
A t  an opposite extreme to the idealized case of figure 5 ,  in which the Rossby waves 

are breaking without thermally dissipating, is the converse idealization in which they 
are’ thermally dissipating without breaking. This classical problem, first studied by 
Dickinson (1969b), has its own relevance to the dynamics of the global atmospheric 
circulation, because of the relaxational character of the radiative heat transfer 
already mentioned. It also bears directly on current questions about the effectiveness 
of the Rossby-wave restoring mechanism in inhibiting chemical transport across 
bands of strong PV gradients on isentropic surfaces, where the restoring mechanism 
may be locally strong enough to suppress Rossby-wave breaking. Such an undular 
‘PV barrier’ against chemical transport on isentropic surfaces is believed to occur for 
instance at  the edge of the wintertime polar-night vortex, and to be crucial to the 
formation of the Antarctic ozone hole, whose chemistry appears to require a large 
degree of isolation of the air within the vortex from its surroundings. An urgent and 
currently controversial question is how complete or otherwise this isolation might be 
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(e.g. Hartmann et al. 1989; Murphy et al. 1989; Proffitt et al. 1989; Tuck 1989), and 
in particular how the interplay between dynamics and radiative heat transfer might 
bring about systematic mean mass and chemical transports across the edge of the 
vortex. These questions will be fully discussed in a forthcoming paper by Haynes & 
Norton (1990) ; but since they are also part of the general theme of this essay, a few 
of the relevant considerations are briefly sketched here in the context of the 
idealization of purely thermal dissipation. 

The most direct way of describing the thermally dissipating, stably stratified, 
three-dimensional flows of interest, a t  the same time as seeing their connection with 
single-layer models like those of figures 2 and 5,  is to formulate the problem in 
isentropic coordinates, assuming hydrostatic balance. We use the potential 
temperature 8 as the vertical ‘coordinate ’. The general PV conservation equation 
then has the same appearance as (4.8), namely 

but the flux J takes the simple form 

J = (u, V ,  0) UQ + JH + JF (8.2) 

(HM equation (2.5)), the two contributions JH and JF being given to within the 
hydrostatic approximation by, respectively, JH = ( H  av/at’, - H au/at’, 0), the con- 
tribution from the local rate of diabatic heating H = DB/Dt, and JF = ( - G ,  F ,  0 ) ,  the 
contribution from an arbitrary body force F with horizontal components F,G.  The 
zeros express the impermeability theorem noted in HM and in $4. Q is the Rossby- 
Ertel PV for the stratified fluid, and u the apparent mass density in ‘xye-space’ such 
that u dx dy dt’ is the mass element, the mass-conservation equation in isentropic 
coordinates therefore being 

(8.3) 

The symbol V now stands for @/ax, a/ay, a/a6). We have uQ = by definition, where 
(5“ is defined as av/ax - au/ay plus the vertical component of Q. The derivatives a/at ,  
a/ax, a/ay are now always taken at constant 8. The components u, v and F ,  G are the 
true horizontal components, and not components along 8 surfaces (e.g. Andrews et al. 
1987). Following HM and using (8.3) we may rewrite (8.1) as 

au 
at 
-+ V * (CTU, FW, a H )  = 0. 

where D,/Dt is the quasi-material rate of change following an ‘isentropic trajectory ’, 
i.c. moving with horizontal velocity (u, v) but staying on one isentropic or constant- 
t’ surface: 

Since the waves are now assumed not to be breaking, i t  is reasonable for the 
purposes of qualitative understanding to use linearized wave theory, as we did in $05, 
6. Linearizing (8.4) about an x-independent mean state Q = Q, u = @, uh = (a, 0, 0), 
we have - 

DQ’+v’- aQ = A’,  
??4 



Wave-mean interactions and vorticity or potential vorticity 425 

FIGURE 6. Isentropic quasi-material contours in a simple, thermally dissipating Rossby wave that 
is not breaking, i.e. the contours are simply undulating and not deforming irreversibly. The 
contours shown actually represent a finite-amplitude solution describing a steady-state, quasi- 
geostrophic, weakly dissipating Rossby wave in a beta-channel with constant a and constant 
a&/ay; equations (8.5)-(8.8) consider only those aspects described by linearized theory, but 
equations (8.9) ff. are relevant at finite amplitude. The dashed line is a line of constant latitude y, 
and the shading picks out a typical quasi-material tube, as used in the analysis of equation (8.11). 

where primes denote disturbances about the mean state, and the basic flow material 
derivative is defined as 

As usual in this kind of theory we have set i~ to zero since it is formally consistent to 
regard B as part of the O(a2) mean response and therefore negligible in (8.5), where 
a is the wave amplitude as before, assumed small in an appropriate sense. Define also 
the northward quasi-material displacement 7’ such that 

Dy’ = 21’. (8.6) 

Then a few lines of manipulation give two alternative expressions for the northward 
eddy transport of PV divided by 3 (cf. (8.8) below), namely 

Here the overbars denote average over x at fixed y and 

(8 .7b )  

8; we call this a quasi- 
Eulerian average. The first expression comes from miltiplying (8.5) by ?‘ and k i n g  
(8.6). The second expression is the isentropic coordinate version of a result found by 
Holton & Dunkerton (1978) ; i t  comes from multiplying (8 .5)  by Q’. 

Figure 6 shows some of the quasi-material contours defined by the displacement 
field q’, or rather its finite-amplitude counterpart, for an example of the kind of 
simple, purely undular, non-breaking Rossby wave we have in mind. For weak 
dissipation these quasi-material contours will almost coincide with Q contours in the 
&surface, but not exactly, because of the dissipation term A‘ on the right of (8.5). 
Note further that, in all the standard theories a t  least, the linearized inversion 
operator that complements equation (8.5) and closes the problem is taken to be 
independent of the dissipation term A’ to sufficient accuracy, as well as, of course, 
being independent of t .  So the right hand side of (8.5) is the only place where the 
thermal, or any other, dissipation appears in the linearized wave theory. It follows 
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that if we have a steady wave solution Q’ = &(x) to the non-dissipative problem 
A‘ = 0,  then, for instance, the textbook dissipative problem that has d‘ = -pQ’ with 
p = constant is solved by Q = 0 e-pt. 

More generally, a non-breaking Rossby wave that is dissipating, weakly enough to 
retain the character of a propagating wave, is a wave in which PV contours and 
quasi-material contours are undular as in figure 6 and in which the term A’ on the right 
of (8.5) is a t  least roughly in phase with y‘, and in antiphase with Q ,  giving a negative 
contribution to w from the terms involving A’ in (8.7). Thus it follows from either 
of (8.7a, b)  that the O(a2) advective PV transport c7- tends to be negative or 
downgradient in an approximately steady, dissipating Rossby wave. Standard 
scaling considerations such as those given in HM show moreover that, in the usual 
quasi-geostrophic scaling regime, the JH term in (8.2) is relatively negligible; and we 
ignore JF once we assume that the dissipation is purely thermal. Thus, quite unlike 
a thermally dissipating gravity wave, a thermally dissipating Rossby wave 
transports PV downgradient and, again quite unlike a thermally dissipating gravity 
wave it does so in a predominantly advective manner. 

Note that the a/at terms in (8.7) show, in addition, that a non-dissipating Rossby 
wave also transports PV downgradient when its amplitude is growing, although this 
transport would subsequently reverse if the wave propagated away without breaking 
(cf. the case study by Palmer & Hsu 1983). Equally, these terms are relevant to the 
incipient stages of the wave-breaking process discussed in $7, and show the beginning 
of the downgradient PV transport process in that problem. Various scenarios suggest 
themselves in which wave amplitude fluctuates but in which, if no wavebreaking 
occurs, the a/at terms in (8.7) tend to average out as time goes on, leaving the 
systematic downgradient due to the thermal dissipation A’ as the dominant 
effect in the long time average. The corresponding effective mean force is obtained 
by applying the arguments of $4 to (8.2) ff., to  give Feff = (Feff, O , O ) ,  where 

Fell = (uv)’Q’ x @a, (8.8) 

whose tendency to be negative recalls the discussion in the second half of $7 .  
These results on the behaviour of the isentropic eddy transport ‘uI&l are of a 

standard kind but are derived here to  show how the case of thermally dissipating 
Rossby waves fits into our general characterization. It does so provided we interpret 
‘mean’ in a suitable Eulerian or quasi-Eulerian sense, as above. The importance of 
this latter point, which makes the Rossby-wave problem very different from the 
problems of $$5, 6, can be brought out more clearly by a brief consideration of the 
finite-amplitude aspects, continuing to neglect JH and JF. 

The simplest relevant thought experiment envisages a steady wave source 
somewhere below the isentropic layer of interest, and a steady dissipating wave field. 
We assume that the wave-mean system has settled down as a whole to an exactly 
steady state in which not only is the wave amplitude steady, but also the mean 
circulation. This makes sense because of the relaxational character of the radiative 
heat transfer. As pointed out in HM (q.v., equation (3.5))’ the dominant balance is 
then 

(8.9) 
This follows from integrating (8.1) over an area lying between the northern boundary 
and a given latitude such as the dashed line in figure 6, continuing to neglect JH and 
JF, setting a / a t  = 0 or taking a time average, and using the divergence theorem. 
Equation (8.9) is an alternative way of expressing what was referred to in $7 as the 

- 
VVQ = - ((Tw)’Q‘ x -#‘uI&l. 
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wave-driven mean circulation across angular momentum surfaces, or at  least the 
part of it driven by Rossby waves in a steady or statistically steady state. The 
tendency already noted for the right hand side of (8.8) to be negative, i.e. for the right 
hand side of (8.9) to be positive, at  least in a long time average, implies a tendency 
for the mean mass circulation Z i  to be persistently poleward. This agrees with the 
observational evidence for the lower stratosphere, and the middle stratosphere in 
winter, where Rossby-type disturbances are thought to be dominant (e.g. Townsend 
& Johnson 1985; WMO 1985), and is consistent with the standard leading-order 
theoretical description based on quasi-geostrophic scaling (WMO 1985 ; Andrews 
et al. 1987). 

Does this also bear on the question about mean mass transport across ‘PV 
barriers ’ such as the edge of the Antarctic ozone hole in the lower stratosphere, when 
PV contours are undulated and subject to thermal dissipation? The answer is no, 
because this latter question is a Lagrangian and not an Eulerian question. The 
distinction is now critical, essentially because the sideways displacements of PV and 
quasi-material contours are an essential part of the Rossby-wave problem. 

To make this clearer we continue to neglect JH and JF, but now integrate equation 
(8.1) over an area lying between the northern boundary and a given PV contour, r 
say, with value Qr. Again using the two-dimensional divergence theorem we now see 
that 

Qr/rnUh.dd8 = 0 (8.10) 

in the steady state, where uh again denotes (u, v, 0) and f i  is a unit horizontal vector 
normal to the PV contour. This result was first pointed out to us by P. H. Haynes 
(personal communication). It implies that in the steady state and with the customary 
neglect of JH and JF, the net mass transport across any PV contour must vanish. 
Another way to say this is that quasi-material contours like those in figure 6 do not 
systematically drift northwards or southwards. That is, they behave just like the 
steady-state P V  contours apart from the fact that their undulations are phase- 
shifted slightly eastwards. 

The fact that there is no net diabatic mass transport across a PV barrier, according 
to this model, contrasts with (8.9) and illustrates the well known way in which 
Eulerian-mean and Lagrangian-mean descriptions of the same thing can look 
strikingly different. For the ozone-hole problem this focuses attention on the factors 
neglected in the present argument, such as JH,  JF, and wave breaking; the full 
implications are discussed in Haynes and Norton ( 1990). 

The way in which (8.10) fits in with (8.9), and with the PV conservation and 
impermeability properties, can also be viewed as follows. First, note that if (8.1) is 
now integrated over a quasi-material region such as the shaded band in figure 6, or 
any other quasi-material region, i.e. a region on the 0-surface that moves with the 
velocity field u,,, then 

(8.11) 

since under the assumed conditions (8.1) says that the PV transport is purely 
advective. If, as in HM, we think of the PV as the mixing ratio, or amount per unit 
mass, of a peculiar chemical ‘substance’, then (8.11) can be pictured as saying that 
the total amount of such ‘ PV-substance ’ contained in any quasi-material volume 
lying between two isentropic surfaces 0 = el, 02 cannot change (HM equation (2.15)) 
- a consequence of the ‘impermeability theorem’ and valid, incidentally, whether or 

IT& dx dy = constant, JT 
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not the motion is steady. The result applies not only to the quasi-material tube 
corresponding to the shading in figure 6, but also to any quasi-material element being 
moved along it by the velocity field uh. 

It is the fact that the &surfaces are permeable to mass, even if not to PV, that 
accounts for the fluctuations in Q despite (8.11). The wave dissipation process implies 
alternate dilution and concentration (HM $2) of the 'PV-substance' contained in a 
small quasi-material element as it moves along a quasi-material tube. The phase of 
the resulting fluctuations in Q has already been noted in the discussion leading to 
(8.8). The negative correlation implies that dilution, or mass inflow, rates peak 
somewhere near the southernmost excursions of the tubes, and that concentration, 
or mass outflow, rates peak somewhere near the northernmost excursions. This 
means that, by mass conservation, the northward-flowing parts of the quasi-material 
tube carry more mass than the southward-flowing parts. Hence there is a net 
northward mass flow across any latitude y = constant, such as the dashed line in 
figure 6. It is this, and only this, that gives rise to the positive value of aV implied 
by (8.7) and (8.9) in the steady state. 

The way in which the mass flow closes vertically is of interest in connection with 
the global atmospheric and photochemical processes touched on in $7.  In the present 
model it is governed by the result of multiplying (8.4) (with JH and JF neglected) by 
n/Q and integrating with respect to 8, namely 

(8.12) 

where wdiab is the diabatic vertical velocity, equal by definition to a H / p .  HM argue 
that this integral is convergent, in practice requiring integration over only a few 
density scale heights (see also Haynes et al. 1990). This relates the diabatic mass flow 
across any given isentropic surface 8 = 8, to the concentration and dilution rates of 
tubes lying above that surface, those lying below it being irrelevant. Like (8.11), 
(8.12) is true even if the motion is unsteady, and even if wave breaking is occurring. 
In  our special case of steady waves it says that in the region north of the dashed line 
of latitude in figure 6, for example, there is a predominance of quasi-material tubes 
extending northward and expelling mass, resulting in positive D,Q/Dt. This 
contributes negatively to the right-hand side of (8.12), and therefore contributes to 
diabatic descent across isentropic surfaces a t  lower levels, for instance near the 
tropopause. This result is of interest in view of an assumption sometimes made that 
the descent is controlled more locally, namely by events at ,  rather than above, the 
tropopause (e.g. WMO 1985, chapter 5). 

9. The Craik-Leibovich instability 
There is an interesting phenomenon, the Craik-Leibovich instability (e.g. Craik 

1977, 1982b, 1985; Leibovich 1980, 1983), that does not fit neatly into any of the 
categories discussed in $2. It is probably best to regard it as in a category on its own. 
It is a likely cause, in many instances, of,the longitudinal vortices that are often 
found in shear flows subject to wavy disturbances of almost any kind. A well known 
example comprises the ' Langmuir vortices ' observed in wind-blown oceans and 
lakes. The theory suggests that the instability mechanism is a robust mechanism, 
insensitive to the detailed shape of the shear flow profile. It is governed (in the most- 
studied asymptotic limit) by equations resembling the equations of thermal 
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convection. The essential conditions for i t  to occur are the presence of a wavy 
disturbance having a sheared Stokes drift, together with pre-existing vorticity giving 
an Eulerian-mean shear in the same sense as the Stokes drift. 

The mean flow evolution is ‘balanced ’ in the sense of our earlier discussion, being 
completely determined by the (advective) transport of vorticity. However, it cannot 
be called a classical wave-driven mean flow, because there is no essential dependence 
upon wave breaking nor upon any other dissipative mechanism and, unlike the 
examples in the past four sections, the vorticity transport cannot in the same way be 
said to be directly wave-induced. The transport is entirely accounted for by 
advection by the mean flow, provided that we define this to be the Lagrangian-mean 
flow, thus including the Stokes drift of the waves. The waves, through their Stokes 
drift, have a catalytic effect rather than a direct driving effect. In consequence of 
this, the magnitude of the mean flow change is not uniformly bounded by O(u2), 
despite the absence both of wave dissipation and of wavelike mean-flow dynamics. 

It appears likely that the magnitude of the mean flow change is limited, instead, 
by the magnitude of the pre-existing mean vorticity in the initial state. However, the 
theory has not yet been extended to all the relevant cases in which the initial 
vorticity is arbitrarily strong, although some progress has been made (Craik 1982b). 
The impediment to progress is the difficulty of calculating the reaction of strong 
mean-flow changes back upon the waves, which might conceivably distort them 
enough to kill off their catalytic action a t  some stage in the evolution. For this and 
other reasons the ultimate fate of an inviscid flow subject to the instability is still an 
open question, as is whether, for example, the evolution is irreversible, as it is in the 
inviscid example of $7,  or whether, for example, it is recurrent in the Fermi-Pasta- 
Ulam sense. 

10. Concluding remarks 
We have argued that the general nature of the classical, dissipative type of wave- 

induced mean motion can be understood in a unified way, by viewing all the 
phenomena in terms of the wave-induced upgradient or downgradient transport of 
vorticity or PV. The basic examples described in $55-8 illustrate the transport effects 
in a manner accessible either to straightforward calculation by analytical methods, 
or to credible numerical simulation. The suggested picture not only shows the various 
ways in which wave dissipation, in the general sense including wave breaking, is 
crucial to these wave-induced mean effects, but also brings more clearly into focus 
the ultimate limitations of applicability, in its most general form, of the whole idea 
of classical mean streaming. This idea, and the ideas and intuitions associated with 
it, apply to the extent that, and to the accuracy with which, the vorticity or PV 
invertibility principle applies (9 3). 

The picture thus arrived at  complements previous descriptions of wave-mean 
interaction in terms of radiation stress, pseudomomentum, circulation theorems, and 
non-acceleration theorems, and gives a succinct yet general way of saying why 
certain contributions to the radiation stress are significant for mean streaming, and 
others not. Radiation stress remains useful of course as a natural way of describing 
the transport of momentum or angular momentum between sites of wave generation 
and wave dissipation, especially if those sites are well separated spatially, as in the 
example of figure 1 (b )  and in the ocean beach longshore-current problem (where the 
generation and dissipation sites may be separated by thousands of kilometres), and 
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in some of the problems that are significant for understanding the general circulation 
of the atmosphere ($56-8). 

Regarding current atmospheric research, a major challenge a t  present is to refine 
our picture of the circulation to include, interdistinguish, and eventually quantify, 
the more subtle three-dimensional effects, and the mean circulations and chemical 
transports associated with prominent observed features such as the steep isentropic 
gradients of PV a t  the edges of the wintertime stratospheric polar vortices and 
elsewhere, for instance in the subtropics. The PV conservation and isentropic 
impermeability theorems appear to provide some important simplifications in our 
thinking about such problems ($8; Haynes & Norton 1990). It is not known whether, 
in addition, the three-dimensional effects will turn out to  include significant non- 
dissipative interactions ($2) between the internal gravity and Rossby waves, or 
between other wave types, as well as the dissipative interactions on which we have 
concentrated here. Whatever eventuates, it seems safe to assume that descriptions 
centred around the way in which the general PV conservation equations (4.8), (8.1) 
are satisfied will be one of the keys to a better understanding of the complex 
interplay of dynamics, chemistry and radiation controlling the state of our planet’s 
atmosphere. 

It is a unique privilege to have been given the opportunity to contribute to this 
very special and important Festschrift Volume of JFM. It is impossible to say in a 
few words how much we ourselves, and the subject of fluid dynamics, owe to GKB. 
Our debt is great and our tribute inadequate. We thank also D. G. Andrews, E. F. 
Danielsen, P. H. Haynes, B. J .  Hoskins, I. N. James, M. N. Juckes, M. J .  Lighthill, 
M. S. Longuet-Higgins, J .  Mestel, T. N. Palmer, T. G. Shepherd, G. J. Shutts, A. J. 
Thorpe and J. Tribbia for stimulating conversations and correspondence about 
different aspects of the fluid dynamics involved here. MEM would also like to record 
that his early interest in problems of this kind was stimulated, in different ways, by 
F. P. Bretherton, D. 0. Gough, and E.  A. Spiegel. The ‘kitchen-sink’ demon- 
strations described in figure 1 are variants of one of M. s. Longuet-Higgins’ beautiful 
wave-tank demonstrations. The relation (8.10) was first pointed out to us by P. H. 
Haynes. We are grateful to B. J .  Hoskins, I. N. James and M. N. Juckes for generous 
help with the numerical models, which were based on those developed in the 
Meteorology Department a t  the University of Reading. S. P.  Cooper gave expert 
help with the task of making high-resolution model output intelligible to the human 
eye, and in many other ways. A first draft of some of this material formed part of an 
essay that shared the 1981 Adams Prize in the University of Cambridge. The ideas 
were further developed with support from the Japan Society for the Promotion of 
Science, the Commonwealth Scholarship Commission, the Cambridge Commonwealth 
Trust, the Natural Environment Research Council through the UK Universities’ 
Global Atmospheric Modelling Project (grant GR3/6516) and through grants 
GR3/5572 and GST/02/446 (British Antarctic Survey), the US Office of Naval 
Research, and the UK Department of the Environment in connection with the recent 
Airborne Arctic Stratospheric Expedition, involvement with which has been an 
important stimulus to our recent thinking about the implications for understanding 
the Antarctic ozone hole and related phenomena. 
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